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Abstract: Several approaches that utilise various questioning procedures to elicit criteria weigh’ . _ “ist, rai._"ng from direct rating
and point allocation to more elaborate methods. However, decision makers often find it diffic’ .t to 1 ... ~tand how these methods
work and how they should be comprehended. This article discusses the SWING family of . *~it7 on techniques and suggests a
refined method: the P-SWING method. Based on this, we provide an integrated framework “-r elicitation, modelling and
evaluation of multi-criteria decision problems.
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1. Introduction

Although promising from a decision-theoretical persp.-tive, ~ormal and semi-formal decision
methods such as multi-criteria decision methods (MCPM) remain rather uncommon in real-
life decision modelling and analyses. This seems *~ =2 ut least to some extent to perceived
difficulties in understanding the decision models a. ~ilable. In particular, there exist several
methods and approaches designed to elicit ¢, w..” **eights that utilise various questioning
procedures, ranging from direct rating and p.® it allocation to more elaborate methods.
Numerous methods use trade-offs in a struc u.~d \nanner, with significant effects for actual
decision-making. However, decision makers continue to find it difficult to understand their
own preferences and how these corresporic to e elicitation methods used for this purpose.
Furthermore, most decision information is imprecise, rendering many prevalent decision tools
inappropriate in the sense that they cannct inherently represent uncertainties. Some decision
methods allow for the modelling < imprr cision, in particular ordinal rankings and interval
approaches (both for criteria w 2ights . 1d values), with the aim of avoiding unrealistic,
overprecise or even meaningles - st.cem :nts, and instead only demanding information that the
decision maker is able to e .pres. ‘ith confidence. Many MCDM researchers have thus
argued that unreasonable ey auness is counterproductive and that other means are necessary.
Preferepce rankings appe=r to co.stitute one of the most commonly used means in this
regard.

There are consequenu, a multitude of approaches to express preference intensities, such
as the MACBETH mrethrd (bana e Costa et al., 2002), ranking using the delta-ROC (Rank
Order Centroid) app. ~=.h (“,arabando and Dias, 2010), or more simplified methods such as
Simos’ method ar . varie. 2s (Figueira and Roy, 2002). The Smart Swaps methods also exist
(Mustajoki and F &maléai ‘en, 2005), while Jiménez et al. (2006) combine various techniques in
the GMAA systen. Fl_itations are based on attribute trade-offs or by directly assign weight
intervals. Th'.se rel~xations of precise judgments are understood to model decision problems
more realistically (-2e e.g. Larsson et al., 2014; Park, 2004). However, solutions to such
problems ~re soietimes hard to find and the results can be difficult to interpret. Numerous
suggestion. b .ve also been made over the years, based on (for example) sets of probability
measures, uper and lower probabilities, interval probabilities and utilities (Utkin, 2017),
fuzzy measures (Aven and Zio, 2011; Shapiro and Koissi, 2015; Tang et al., 2018) and

! Corresponding author.
2 See e.g. Barron and Barrett (1996), Riabacke et al. (2012) and Danielson et al. (2014) for extensive discussions
of elicitation procedures, including issues regarding precision.
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evidence and possibility theory (cf., e.g. Dubois, 2010; Dutta, 2018; Rohmer and Baudrit,
2010). There are also approaches based on second-order techniques (Danielson et al., 2007;
Ekenberg et al., 2014). Other approaches modify some classical decision rules, such as the
central value rule based on the midpoint of the range of possible performanc.s (cf. Aguayo et
al., 2014; Ahn and Park, 2008; Mateos et al., 2013; Sarabando and Dia, ?009). Salo and
H&mal&ainen (2001) have suggested a set of approaches for handling imprecise n.’armation in
these contexts, such as the PRIME method for preference ratios, while the SMART method
has also been implemented in software (see e.g. Mustajoki et al., 2002, 'Jevertheless, these
approaches exhibit various difficulties, including combining both n.*erva. and qualitative
estimates with weighted decision rules but without introduciry rery rough evaluation
measures such as I'-maximin or (Levi’s) E-admissibility (cf., :g. Augustin et al., 2014).
Greco et al. (2008) suggest UTA®M® for a purpose similar to this nap.~ (which uses an ordinal
regression technique), generating a representation extracted f om pe rwise comparisons even
when ordering is incomplete. Figueira et al. (2009) generalise *his by taking cardinalities into
account in order to obtain a class of total preferencs iunctions compatible with user
assessments, restricting the polytope in various respects. F ar Lur | urposes, this is less suitable
because it is unclear how it can be extended when other . 'nes ~7 information (such as interval
constraints) also exist, resulting in computational issues as explained in, for instance,
Danielson and Ekenberg (2007). Furthermore, in many 2asec the structural constraints can be
represented by second-order information (Ekenberg (* al., 2005), which provides further
information that should be handled. Hence, o. iepresentation is in such respects more
appropriate to the purpose of this paper, as explan.cd below. In any case, the formalism
suggested is by no means the only possibility, anc si,ould instead be considered an example
(as well as being the foundation for the com~iter . ol used below).

One of the most important problems in 1@ MCDM methods is the handling of trade-
off effects between the value scales of ¢ “F=ven( criteria. Trade-off methods are quite useful,
but given the number of judgements requu . of the decision maker they can also be very
demanding and sometimes intractable For example, Fischer (1995) highlights that trade-off
methods tend to give greater weigh’ to the most important attribute. One prominent family of
methods addressing this and other ~rob’zams is SWING weighting (von Winterfeldt and
Edwards, 1986). As an examr.e, he popular SMART family of MCDM methods was
extended with SWING trade-. ¥, yi~iding the SMARTS method (Edwards and Barron,
1994).

This article suggests . re..ned method — the P-SWING method — in an attempt to
overcome some of the tyr..o! problems associated with elicitation. The method consists of an
amended swing-type te” anir,ue at its core. However, whereas a traditional SWING session
only contains from-worst-w. hest swings, the suggested method adheres to the core ideas
while allowing for i ter 1ediate comparisons as well. This will aid the convergence of the
weights for the criten. Fur.nermore, there is no use of zero alternatives or similar synthetic
constructs, and ir stead many more available real data points are utilised. Based on this, we
provide an integ ated fi aimework for elicitation, modelling and evaluation of multi-criteria
decision probl~ms.

The foll \wing . 2ction describes an experiment to compare different MCDM methods in
which some nrob’ems with SWING techniques were detected as side effects, and
subseque: .., ~vnlored alongside remedies via focus groups. In section 3, we formalise these
remedies i.*c an extended method for criteria weight elicitation with improved precision,
called P-SW. !G (Partial SWING). Section 4 describes how P-SWING is integrated into a
framework for elicitation, modelling and evaluation of multi-criteria decision problems.
Sections 5 and 6 then describe in detail how the framework is used in practice, in order to
demonstrate its advantages. Finally, section 7 concludes the paper.



2. MCDM methods

In order to investigate how some popular classes of MCDM methods are perceived and used
in real-life decision making situations, we conducted a study involving 100 people making
one large real-life decision each (Danielson and Ekenberg, 2016). A req' (rement was that
such a decision was important, not obvious to the decision maker, and :equ. ~d substantial
information collection in advance. The decisions included selecting a cor....>/ or area in which
to live, choosing a university programme and buying an apartment Tbh: three classes of
methods studied were generalisations of some of the most popular MTDIM Methods, i.e. three
very common classes of value function methods:

e proportional scoring methods, such as the SMART family ~f r.ethods;
e pairwise ratio scoring methods, such as the AHP methor': ~nd
e cardinal ranking methods, such as the MACBETH or C AR me *hods.

Both the proportional scoring and the cardinal ranking met'..ds weie supported by a SWING
procedure in the step whereby criteria weights were elicite 1from he decision makers.

2.1 Initial study

As discussed in Danielson and Ekenberg (2016), er~h 1 div'dual in a group was offered two
to three weeks to complete a decision-making task usn. the three methods in parallel, before
being asked to reflect on the advantages and dis. “vantages of each method. In order for the
results to be comparable, the methods were stinporte.! by computer tools with very similar
user interfaces, ensuring that the three methods wve'e applied correctly. Adequate tutoring and
guidelines for each method were available throuhout the decision-making processes. The
decision makers’ respective reports containe c~cision data as well as results from and a
comparison of all three methods. The | -..iz'n- ts were subsequently interviewed in focus
groups and their results regarding the respecu .= methods were analysed and compared.

However, while the results dem~~strated that cardinal ranking methods outperformed
scoring methods and pairwise com.aring i 1ethods (both in terms of actual simulation results
and the participants’ issues with us..>a t'ie respective methods), a complication was later
discovered in the concluding f.cus groups in which each participant discussed his or her
work. Indeed, during the focus y. ~ «p 0 scussions it became evident that a large number of the
participants had not fully unr'2rstooa .ne concept of swing weights in spite of having received
ample instructions before a. wei. 2s guidance during the work. The misunderstanding did not
affect any method in parti .u.r (rather, the confusion was more of a general nature), but it was
apparent that many pa: icirants treated swing weights as if they were absolute (a priori)
weights not tied to ‘ne purticular attribute scales in question. This may invalidate the
outcomes of the u age of any decision method employing relative weights, and thus
represents a serious u."tar.e to the widespread use and acceptance of decision analytical
methods in gener ..

2.2 Enlarr= swuay

Given that ti e stud* in Danielson and Ekenberg (2016) was not designed to deal with this
issue, we subse_ointly conducted a study with 39 new participants, asking them to estimate
absolute (. orr .., weights for their criteria before the work began. They were also told to use
relative swn 1 weights during their decision work. After their decisions were made, the
decision processes for the determination of criteria weights were discussed in focus groups.
The subjects were then assessed according to whether they were able to differentiate between
absolute (a priori) and relative (swing) weights. Three indicators were used: how close the
relative weights were to the absolute, whether the relative weights were modified when
alternatives with a large impact on some scales were introduced, and the reasoning when the
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relative weights were determined. Of the 39 participants, only four demonstrated a clear
understanding of the difference between absolute and relative weights. If this result is
indicative of a wider (mis)use of relative weights, a SWING based methodology seems to be
insufficient when eliciting criteria weights. On the other hand, absolute wrights are neither
mathematically nor logically advisable and also cause severe difficultiec *then calibrating
scales. However, from the focus group discussions, one important observation w..> possible: a
commonality between those who had realised the difference between rel: tive and absolute
weights and those who could realise it after the discussions was ti..* .hey were able to
comfortably reason about subparts of the scales where real decisioi. 2bjects (alternatives)
were positioned. This implies a third elicitation option: to use 7 1 2dificd relative weight
elicitation technique.

During the study, it was observed that contrived reference nhjec*~ such as made-up best
or worst cases or “zero alternatives” constituted particularly f oor vehicles for thought. Many
participants exhibited considerable difficulty in understan'ing t'.em or their meaning.
Subsequent discussions in the focus groups converged i'wu hwo observations on desirable
properties (in addition to a swing-like procedure) for an el.-i* .ior technique to possess:

1. The focus during the elicitation should only be on e existing real-life alternatives
without any abstract additions.

2. When constructing the ordering of the criteria *eights, the procedure should not be
limited to extreme points (the endpoints - uie value scales), but should rather allow
the use of all values actually asserted.

Based on these desiderata and on discussior= in t.» focus groups regarding the ways in which
remedies and solutions could be introduced, w. have designed an elicitation technique that
extends the SWING methodology by int' .2:'«ir~ partial assignments and interval constraints.
This extension is applicable to all SWING-, ~lated methods and has been coined P-SWING
(Partial SWING), which is formalised in the following section and then exemplified by
extending an existing MCDM meth’.d.

To recap, cardinal ranking meti.cs ( epresented by the CAR method) were superior to
other classes of methods, but tie rlicitation component could be improved. We therefore
propose the P-SWING methou, ~rasic.ing of an amended swing-type technique at its core.
The basis is that while a “raditioi..l SWING session embraces only from-worst-to-best
swings, P-SWING employs n..~rmediate comparisons as well. This will rapidly aid the
convergence of the weigh’. ‘or the criteria. Furthermore, there is no use for zero alternatives
or similar synthetic cons ruc’s, and instead many more real data points are utilised. In order to
enable a stability anal*sis ucving the evaluation phase, we also introduce intervals around the
surrogate weights ge’.era’ed from the elicitation process.

3. P-SWIN G

Modelling realis..~ derision problems often results in numerically imprecise and vague
sentences, su.n as “the value of alternative A1 under criterion C; is greater than 40 %" or
comparative ‘entenc :s such as “the value of alternative A; under criterion C; is preferred to
the value of ai....ative A, under criterion C;.” Such sentences are easily translated into a
numerical “arr iaw. In the interval case, the translation is of the format v;; € [as, by], i.e. the two
linear inequa.ities vj; > a; and by > vj5, where a; and by are real numbers on the scale under
consideration. Similar translations apply when representing comparative sentences, where we
attain inequalities in the format vj; > vi.. More generally, the statements of the decision makers
are represented by linear inequalities involving a set of decision variables {x;}, icl, which can



be translated into the format kyx; + k,x, +...+ k.x, & b for some constants k;, Viel, and b, as
well as relational operators & representing equalities or strict or weak inequalities.

3.1  The P-SWING process

Assume that values for each attribute A; under each criterion C; have oec> elicited. The
ensuing step will be to assign weights to the criteria such that >; w; = 1. The P-SWING
procedure is then carried out in two steps as follows. The basic idea is hat after the ordinary
weight comparisons have been undertaken, a further step is added for the . 'rpose of verifying
that the initial ranking is preserved, i.e., an indication that the decision n..'ver is aware of what
he or she is expressing. However, another important feature here “s tc =+vavide the possibility
to increase the precision in the estimate by comparing subscale. '» .th one another. The P-
SWING procedure steps are:

a) In a rather traditional swing-type session, the decisi. ™ uker is asked to compare
the swings between the endpoints (best and wo st 0’... sme) regarding the criteria’s
respective value scales. The criteria weights a:. rank 2d using an ordinal ranking
function amended with ‘=". Questions asked «» o1 the type “Which is the most
important to you: the difference between ~ndpoin s in criterion C; or in criterion
C;?” The result of this step might (for in.*ance] Le a ranking wy > Wy = W3 > Wy =
ws, or numerical scores if such a weight renre ~ntation is being used.

Note that if we assume that vip and vi; " the endpoints of the value scale for
criterion C;, the comparisons are th.n v .22 type (Vii—vio)'Wi > (Vj1—Vjo)-W;, i.€. of
the character of the ordinary comnarisc 1s w;j > w;.

b) The baseline of the next step is vau iractions of the criteria’s respective value
scales are compared. Questiv.’s a..2.d are now of the type “Which is the most
important to you: the difference v :ween the values a; and oy in criterion C; or
between the values o4 ar.. ... in criterion C;?” This step thus introduces a new
feature by allowing to ¢/ mpare Harts of the scales with one another.

The statements then < oncequeatly become of the type (o1-Vii—02-Vig) Wi > (0i3-Vji—
a4-Vjo)-Wo for real va. 'e tate.nents as to as in [0,1], where omViz—an-Vio > 0, for all
i, n, m. We call thr se staw.” ients a-statements.

This also means that .>2 questions only focus on real alternatives existing in the
current decis’un context. In this way, a revised system of inequalities (and
equalities) is “ar ned, and if this system has a solution, it is consistent, i.e. the
decision maker ho> made a consistent assessment of the relative importance of
different ritr.ia. "he weights are adjusted in accordance with the new system.

Each statement i. thus r. presented by one or more constraints, and after a session we receive
two sets of linea, ~~.straints: one containing the values of the alternatives under the
respective cr’erion *nd one containing the weight statements.

3.2 P-2\WING evaluations

In order to\ >.ilitate the execution of a P-SWING process, there must be procedures present to
continuously .alidate the input and support further input. In this section, we suggest a
formalism that will take care of this support by introducing and ensuring consistency in two
sets of linear constraints: one set of weights (the ones to be swinged) and one set of values

® The index set I is {1,...,n} where n is the number of variables in X.
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(the ones to form the judgement basis for swinging). This will help prepare the evaluation of
the decision problem, as it consists of evaluating the formula (1) (see section 4 below)
involving the weights and the values of the problem.

In the presentation below, we will refer to the conjunction of constraints for the weights,

together with X; w; = 1, as the swing base (S). The value base (V) “.0.."ists of similar
translations of vague and numerically imprecise value estimates in terms ~f v;;. Ti.e collection
of alternatives, criteria as well as the weight and value statements .ons<.itutes a decision
problem. Furthermore, the initial most representative point (MR-point) 0. * e weights must be
modified according to the new information provided.

Definition 3.1: Given a set of variables S = {x;}, iel, a continuou. f'.nction g:S"—[0, 1], and
real numbers a,b € [0,1] with a <b, an interval constraint g(x, ...,x,) € (a,b] is a shorter form
for a pair of weak inequalities g(X.,...,x,) > a and g(Xi,...,x,) < 0.

In this manner, equalities and inequalities can be handlec In » .~iform way. There are many
types of constraints, and they correspond to different types .. dec’sion-maker statements.

Definition 3.2: Given a set of variables {x;}, icl, and 122l n mbers a,b € [0, 1] witha<b: A
comparative constraint is an interval constraint of the 1.'m x; - xj € [a,b] with i,j € I'and i #].

All interval constraints are linear. A collection of intei . al constraints concerning the same set
of variables is called a constraint set, and it for.ns .ne basis for the representation of decision
situations.

Definition 3.3: Given a set of variables -], i- ', a constraint set in {x} is a set of interval
constraints in {x;}.

From the definition of an interval ."nstrai i, it follows that a constraint set can be seen as a
system of inequalities. For a sy.cem o, .nequalities to be meaningful, there must be some
vector of variable assignments * 1at * atis”y each inequality in the system simultaneously.

Definition 3.4: Given a set u. variables {x;}, icl, a solution to a system X of inequalities in
{x} is areal vector a = (a» ..,a,) v./here each a; is substituted for x;j such that every inequality

in the system is satisfied TF 2 vector a is called a solution vector to X. The solution set for X
is {b | b is a solution t9 X

Constraint sets have ma, * sroperties in common, whether they are weight or value constraint
sets. The first qu :stion ‘s whether the elements in a constraint set are at all compatible with
one another. This trans) ites to the problem of whether a constraint set has a solution, i.e. if
there exists ar y vector of real numbers that can be assigned to the variables.

Definitior 2 5: Given a set of variables {x}, icl, a constraint set X in {x;} is consistent if the
system of \ e” « Inequalities in X has a solution.® Otherwise, the constraint set is inconsistent.
A constraint . is consistent with a constraint set X if the constraint set {Z} U X is consistent.

*There exists a solution if the substitution of aj for xj in X, for all 1 <i<n, does not yield a contradiction.
*Hence there is a non-empty solution set for X.



In other words, a consistent constraint set is a set where the constraints are at least not
contradictory.

Definition 3.6: A swing base S consists of a set of swing weight statements (o which W, =
1 is added.

Definition 3.7: A swing decision problem contains the following inforn atio 1 about a decision
situation:
e A set of alternative courses of action {A;} fori=1,....m (m>2),
o Asetofcriteria {Ci} fori=1,...,n (n>2);
e For each alternative A; and each criterion C;, a value v,, o a value scale for that
criterion;
e Aswing base S containing all swing statements.

According to the definition of an interval statement, a ba‘e c? . "¢ seen as a set or system of
inequalities. The first question is whether the statements i, « sw'.ag base are compatible with
one another. This translates into a question of pointwise cu. isiency.

Definition 3.8: A solution to a swing base is a vecto, ‘v = (.1,...,wn) such that every equation
in the corresponding system is satisfied.

Definition 3.9: A swing base is pointwise cor :~*ant (or p-consistent for short) if there exists
at least one solution to the base. Otherwise, the L2<: is p-inconsistent.

In other words, a p-consistent swing base is a vasc where the translated statements are at least
not contradictory. This is a required propc:v 1v. a swing base following completion of the P-
SWING procedure.

However, pointwise consistency o *itutes a rather weak property of a swing base. If the
statements in the base are consistc 1t only at a single point, the base is vulnerable to small
changes in the input data and to t'ie eni.~*, of sensitivity analyses. Given that we are working
with high degrees of imprecisir n, t'4s rroperty alone is thus too weak. We must be assured
that the base would remain cons..ten’ at least for reasonably small changes in the interval
statements.

Single-point solutions 1n the “ases are thus essentially meaningless and, to make the
concept of consistency st ong 2r, we introduce the concept of regular consistency.

Definition 3.10: A cunsisten.. base X with variables xi,...,x, is regularly consistent (or r-
consistent for short) =le.rve .0 a given regularity vector r = (r,...,ry) if for each component in
the norm (dy,...,d-> 4>, 7 her;s are called regularity values.

It is convenient to discu’ s properties of a single equation or interval statement added to a base.

Definition 3 11: An equation or interval statement Z is r-consistent with an r-consistent base
X if the base {~; — X is r-consistent.

Definition 5.12: A decision problem is r-consistent if the value base and the swing base are
both r-consistent.

The most fundamental computational component in P-SWING is a way of calculating the
consistency of a swing base. Given that the base consists of a linear system of interval
equations, the natural candidate for an algorithm is linear programming. In fact, p-consistency
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is equivalent to completing phase | of a standard linear programming (LP) problem. As noted
above, a swing base is pointwise consistent if any solution can be found to the set of interval
equations. Let there be m interval equations in the base. By introducing new variables
Y1,...,Yk, With K = 2-m, to the consistency problem, it can be reformulated as

min (yp + ... + Yi)
when Ax>b
and x>0,y >0,

where each interval equation aj;X; + aipx2 + ... + ainXp € [b;,di] i ucnsformed into the two
equations ai1Xy + a@i2Xz + ... +ainXn—Yj = bi and aixi+tapxe+ .+ ankntyi<dp. If the
obtained minimum of y; + ... + yy has the value zero, then a sol'*tion . ~s been found that does
not contain any y;. Removing the y;s, the resulting solutior vecte- x is indeed a feasible
solution, that is, the base is proven to be consistent. If the miniirum e, y; + ... + yi IS positive,
then it is certain that the optimal values of the y;s are larc :r than zero, that is, at least one of
the yis is necessary to keep the base consistent. Given tha. t+: yic were added to the base, the
problem itself has no solution. Hence, the base is inconsi.=nt.

4. Evaluation

The evaluation process is uncomplicated to perform ~Ae me a standard MCDM method that
seeks to evaluate each alternative, yielding a most .~nresentative point (MR-point®) for each
alternative. First, we make a pre-elicitation as ... ~*»n a) of P-SWING and calculate the MR-
point with a suitable interval environment arou < it. Thereafter, the a-statements are added.
These calculations are made by the LP-aioc-ithi above. If we still have an r-consistent
decision problem, we can proceed. The adju.teu MR-point is the point that has the least
distance from the original MR-point, as ex, “esscd by the definition below.

Definition 4.1: Given an r-consiste it u.nision problem in n dimensions, assume that the
extreme points in each projection ¢.” the a» 2s of the orthogonal base of the system are [a;, bi],
and that the MR-point for that r.imens.> 1 is ¢= (Cy,...,cn), then the adjusted MR-point, ¢'=
(Clla'”, Cnl), IS
- Ci—(, cp gl
argming, Z?(;a: - b?a?)z

Following the elicitation ph. se, the multi-criteria decision problem is evaluated as a multi-
linear problem against .~ packground information contained in the r-consistent decision
problem and the adjus.ed Mk »oint. This means that we solve equations of the format

"y nil n'm—z n'm—l

<
E(Alj - inilhxiilizm_z XiiliZIHimfZim—lZXiilizl"imfzim—limxiiliZ."im—zim—lim’ (l)

=1 i,=1 =l in=1

given r-cons’,tent “ecision problems. The expected values E(A;) are computed by solving
successive liear pragramming problems in each base (weight and value). Given that the
weight and valuc wases are independent, the collected solutions constitute the total solution to
the multi-i.me7« pioblem in (1).

® An MR-point is the most representative point that represents a solution to the problem. If probabilities are
involved, this is usually the expected value. If criteria weights are involved, this is the weighted value over all
criteria and thus over all value scales. The MR-point is a general concept covering all of the above situations and
combinations thereof.
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Over the years, we have developed processes and software libraries to solve problems of
this type in a more general way, by expanding a Multi-Attribute Utility Theory (MAUT)
approach that allows for imprecise estimates of various types. One example is the software
DecidelT, which allows for imprecision of the kinds that we have in r-ccisistent decision
problems with numerically imprecise weights and values. The cardinal ra'.."ing of DecidelT
compares the performance of each alternative to others as well as providina an es:mate of the
reliability of the result. This tool considers the entire range of values s a ‘ernatives present
across all criteria, and displays the plausibility of an alternative outrank.~c those that remain.
Various versions of DecidelT have been used in a wide variety ~f contexts, such as
infrastructure development, long-term storage of nuclear we.., chu.ce of insurance
portfolios, demining, gold mining and applications for fina' cia’ risks (Danielson and
Ekenberg, 2007; Danielson et al., 2007, 2009; Ekenberg et al | 2c"9, 2017; Mihai et al.,
2015).

The basic function of DecidelT is to investigate the rar.res of values and weights for
which a strategy is optimal against a set of equations, for ‘nstance of the type vii > v, wy >
0.1, wy > 0.3, wy > ws, wy € [0.3,0.7], vi1 € [0.5, 0.6], »*.. B/ examining the number of
assignments of variable values to which the differen. stralzyies are superior or inferior,
respectively, we can investigate the properties of the sutegies. A detailed account of
DecidelT and the utilisation of second-order informatio. are yeyond the scope of this article,’
but below we present an example to illustrate how to us. DecidelT together with P-SWING.

5. Example of P-SWING evaluation proc~ss and use

Consider a procurement process in which a la . organisation is looking for a new office
space, as its existing space has become les >deq ‘ate. The decision situation is to select a
space from four real estate developers, A. B, ~, and D, in order to realise this project. The
criteria emphasised in the selection proces. 2re runctionality (basically the degree of adequacy
of the new premises), localisation (geographical and infrastructural), opportunities for
interaction with the surrounding soc’cty, .1d price.

Elicitation

First, the values for the alterns 1ve pro -iders (when taking all participants’ preferences into
account) are summarised, as Fzlow. W e set the qualitative scales as [0, 1] and let the scale for
the price be the actual price.

Functionality L cali ation Opportunities Price

A is better than B £ '~ s (ghtly better than C B is better than A A costs 5.5 MEUR
B is slightly better than = Cis be *er than A A is better than C B costs 6.0 MEUR
C ‘ A s better than D C is better than D C costs 5.0 MEUR
C is better than D N D costs 4.0 MEUR

We express this i1a sem tics using “>;” symbols for denotation:®
> aqu.!"’ 400d
> sligh. "y better
>, bette’
>- much better,

’ See Ekenberg et al. (2017) and Danielson and Ekenberg (2018) for details.

8 Needless to say, there are various suggestions for how to interpret such statements (cf., e.g. Xu, 2013; Chen and
Hong, 2014), but we will not discuss the exact wordings and their possible semantics, as interpretations are
considered geometrically. If other candidates were considered more reasonable for one reason or another, the
number of steps between the discriminative statements could be changed without affecting the general idea.
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where x, >; Xpiq IS X > X Wheni=1land {x, > xp, xp, > Xpe, ooy Xge,_ | > Xggr)s 1€,
a set of linear expressions connoting i “steps” between x;, and x4, using auxiliary variables
Xi;, wheni> 1.

This results in the following value statements:

VE(A) >3 VE(B) vi(B) >1 vi(C) Vo(B) >2 Vo(A) Ve(A) =5.5

Ve(B) >; Ve(C) v (C) >, v (A) Vo(A) >, Vo(C) vp(B) = 6.0 !

VE(C) >; Ve(D) VL(A) >, vi(D) Vo(C) >; Vo(D) Ve(C) =5.0 !
V(D) = 4.0 |

Following the process described above, and assuming that there a. ~ ro immediate conflicts in
the initial preferences, they make up an initial ranking that res..’s in ,“unctionality being the
most important criterion, followed by Localisation. Therea ter fol.ows Opportunities, and
finally Price.

Considering the scale endpoints, assume that the participai.:= pros .de the following statements
as a result of step (i), yielding the following initial ran~nqg. r~unctionality is slightly more
important than Localisation, which is more irnortant than Opportunities. Finally,
Opportunities is more important than Price. This ‘s tiu~~'ated into the following cardinal
ranking order:

* W) > w(l)
o w(L)>w(O)
e W(0)>w(P)

In step (ii), the decision makers react £, .:>n.'ing the following supplementary statements
for the criteria:

e The difference between B #.1d C i Functionality is more important than B and A in
Localisation.

e The difference between _ ard D in Functionality is more important than A and D in
Opportunity.

e The difference betwr *n C anu A in Localisation is more important than B and D in
Opportunity.

e The difference b.ow en B and C in Localisation is more important than a Price
difference of 1 M1 R,

Evaluation

In spite of the strurtura. <i nplicity of the problem, it is comparatively difficult to provide a
recommendation withod* further analysis. The value statements are measured on [0, 1]-scales
by assigning 1’ .~ the ' est value and ‘0’ to the worst in each criterion. The other values are
henceforth pl.ced hnearly on each [0, 1]-scale so that each “step” in the description above
occupies an qually wide interval and the sum of the intervals fully cover the [0, 1]-scale.’
The only excep ", are the endpoints where the intervals do not extend beyond the points ‘0’
or ‘1.

Criterion Funcconality:

o For example, assume that the statements are w(X) >; w(Y) and w(Y) >; w(Z). This yields 4 steps in
total, with each step ¥ in size on the [0, 1] scale. X is placed at the upper end (1) and Z is placed at the
lower end (0). Y is now placed 1 step from the top and 3 steps from the bottom, at 0.75.

10



Lower Upper
bound bound

0.900 1.000
0.500 0.700
0.300 0.500
0.000 0.100

o0 W >

Criterion Localisation:

Lower Upper
bound bound
0.300 0.500

0.900 1.000
0.700 0.900
0.000 0.100

o0 w >

Criterion Opportunities:

Lower Upper
bound bound

0.583 0.750
0.917 1.000
0.250 0.417
0.000 0.083

o0 w >

Criterion Price;

Lower Upper
bound bound

0.125 0.375
0.000 0.125
0.375 0675
0.875 1,00

o0 W >

Thereafter, we calculat - th.. r-consistent decision problem from the initial rankings. The
feasible region (orthor,onai .ll) of the criteria weights is then computed in two steps. First,
the MR-point is calc ulat” d ucing the CAR method (Danielson and Ekenberg, 2016). To cater
for the inherent impic~ision in the elicited information, an interval of about +10% is
subsequently forr ied ar~und the MR-points by way of the Decidel T software implementation
of CAR. This yie 1s the ollowing weights:

Lowei MR- Upper
hounr point bound
w(F) 0.396 0.453 0.553
w(L) 0.264 0.302 0.369
w(O) 0.145 0.170 0.198
w(P) 0.038 0.075 0.098
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The supplementary statements in step (ii) in the P-SWING process are translated as (refer to
the information above):*°

e 0.4w(F)>0.6w(L)
e 0.4w(L) > w(O)
e 0.4w(F) > 2/3 w(0O)
e 0.2w(L) > 0.5w(P)
After the statements in step (ii) have been considered, the orthogonal .. "Il has shrunk but

remains valid (i.e. non-empty), which continues to provide a co..~istent system and
furthermore indicates that the decision maker(s) have understoor. th: -elative nature of the
criteria weights.

The modified weight intervals and adjusted MR-point are ther. the fol awing:

Lower Adjusted Upper
bound MR-point bound
w(F) 0.436 0.480 0.553
w(L) 0.264 0.283 0.327
w(O) 0.145 0.163 0.186
w(P) 0.038 0.074 0.098

A criteria tree containing this information is ~2wr, 'n Figure 2.

v T 33%)

<) Cr.1 W.Tot: [43.6%, 55.3%)

W38, 9.8%
ik ! <> Cr.2 W.Tot:[2.8%, 9.8%]

lé_ . 1[26.4%,32.7%]
Locslize. - L+<)(:r,3 W. Tot.: [26.4%, 32.7%]

— — W{[14.5%, 18.6%] )
O ortunit’ s Cr.4 W.Tot.: [14.5%, 18.6%]

-igure 2. Criteria tree.

Once modelled, the prculer 1 can be evaluated. We use formula (1) above by using the
Decidel T** tool for anai,~'s. In so doing, we can attain greater information regarding the
factors involved. An i iiti?] result can be seen in Figure 3.

9 For example, he statement “The difference between B and C in Functionality is more important than B and A
in Localisation” by the decision maker entails that the difference between B and C on the Functionality scale
(0.4) carries greater importance to the decision maker than the difference between B and A on the Localisation
scale (0.6). This is then entered into the system of equations and inequalities as 0.4-w(F) being greater than
0.6-w(L). These added inequalities form a set of anchor frames that the expected value solutions may not violate.
1 The P-SWING algorithms in this paper are implemented in the DMC decision library that underlies the
DecidelT tool.
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Figure 3. A first evaluation of the decisic ~ situation.

In the figure, the software displays the result of assigi..nq all possible values to all variables,
given the supplied intervals and relations. Thu. uispiayed are all possible expected value
ranges (minimum through maximum) given the im mation entered. The figure illustrates
how the strategies (alternative courses of ac ‘on ._late to one another given the values
defined through our ranges and comparisors. Ti. * green bar represents provider A, the blue
bar represents provider B, the red bar repi>sc~ts provider C, and finally the yellow bar
represents provider D. We can now see *2t nrcvider B is slightly better than provider A, and
much better than the other two, given the ~formation available. Furthermore, the result is
insensitive to changes in input values. rendering it stable. The advantages of solving problems
in this way become even clearer wher, dealing with large problems, but this example
demonstrates the principles at work.

Sensitivity analyses

Uncertainty is inherent in virtJally a.. «nformation in real decision situations. It is ensured that
the requirements concernins, picision in the input data of the method above are as minimal as
possible, while still enab’..>n a decision outcome. This is achieved by employing cardinal
ranking instead of nume ica input, and forming uncertainty intervals around the weights and
values. One should theveto, - investigate how changes in different components affect the final
result. We can now ' 1ve dgate the stability of the choice of a strategy (alternative) when the
input data change. ke . w e primarily investigate the limits within which the weights and
values must rem7.n for tne decision not to change. This is achieved by allowing the input
values to vary L>tween possible realistic values and to investigate how these fluctuations
affect the outcrme. 7hus, the values are systematically varied up and down.

We can analy.2 this in several ways. For instance, we can study the stability to
investigate th. mos’ important values. Often when we specify an interval for a variable, we
probably 2 ~nt believe in all values of the intervals equally, and rather may believe less in
values clos. ¥ (o the boundaries of the intervals. Values near the boundaries are nevertheless
added to the ‘ntervals to cover everything that we perceive as being possible given the
uncertainty of the decision problem, but with an indication of the strengths with which we
actually believe in the different values. Figure 4 exemplifies a possible belief in a weight of a
criterion, where there emphasis is on the middle values of the interval.
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degree of belief

Figure 4. Beliefs in different values

In analysing the decision solution and its stability, we want to knc.v vhau (e situation looks
like if we gradually reduce the interval parts in which we have le st b :lie, and focus on those
that we believe in the most. We call this contraction, and it is realis.  systematically with all
of the variables involved.*? Figure 5 displays the changes in th~ expected values for a
particular alternative during these analyses.

File Edit View Update
| Q tv| W T

Exp. Value Maximum . voev. "~ value: Alt, 2
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0232

0.733
0.7EE
0732
0633
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0B322

06
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0533 T Minimum expected value: Alt. 2

0.5 -+

Figu. 5. Contraction analysis for provider B.

We can see how the imal expected value for provider B (at 0% contraction) ranges
approximately betwe .n (.617 and 0.832. At 40 % contraction, it lies approximately between
0.658 and 0.787, anu .~ 4.71 , at full contraction (the most likely expected value).

The same analys s can L 2 made for a pair of alternatives. Figure 6 shows how two providers
relate to one anot.>* '« slightly simplified reading is that the greater the proportion of the
triangle foun 1 abo\ ~ the x-axis, the better the strategy, and vice versa for the other strategy.
Regarding th» exar.ple, we therefore see that the decision is not totally stable (relatively
sensitive *~ input data), but that provider B is better than provider A given the current
informatio

12 There are also functions to study the sensitivity of each variable separately, so-called tornado diagrams. In
such cases, each variable’s contribution can be studied, but a treatment of such functions is out of scope of this
article.
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When the triangle area is fairly centred with respect to the x-axis, it can still be difficult to
determine a recommended strategy due to similarities or significant overlaps, and so we may
seek to collect more information. We can then (for instance) use tornado diagrams to
investigate which information is most important to the decision and to esta* lish how best to
allocate resources for further investigation. In short, an overview of the e",~~tiveness of the
respective strategies can be gained by examining how much of the area is locaw. ! above and
below the x-axis. As can be seen from Figure 6, provider B is slightly 'ett r than provider A
in this respect. However, there is more to the picture. Further calcula..~c the more detailed
distribution of the belief mass (Ekenberg et al., 2005) yields a percen. e o. the mass above
or below the x-axis, i.e. the percentage of belief supporting either c.ic alter.ative or the other.
In Figure 6, even though the triangle is fairly centred, most of “1e ¥ elie: mass resides with
alternative 2, which is provider B.
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Figure o Com saring the two strategies.

In summary, a holistic perspec 1ve of the entire decision situation is displayed in Figure 7.
The respective bars show the .xte:.: tc which the various criteria contribute to the final values
of the strategies (alterna’..”s). For instance, the criterion Functionality contributes
significantly to the value of oroviu.r A, but not as much to providers C or D.
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Figure 7. Comparing all stra.. “tes at the same time.

The figure also shows the confidence levels «+ «.” ~~sults, based on the distribution of the
belief mass. It is clear that the differences bev cen the providers are significant and that
provider B is the best with mild confidenc. ** thet provider A comes second, followed by
provider C with high confidence, and fir=llv p.ovider D with a very low value and also with
high confidence. Provider B should there.>ve pe selected if we have no more information.
However, given that the confidence in the separation between provider B and A is lower (we
saw in Figure 6 that it is 78 %), it r.ight .2 worth investigating if more information exists. It
is clear that neither C nor D is a ca.idate to consider. In the calculations, we have used the
software DecidelT (version 3.0). which ¢.n be freely used as long as it is for non-commercial
purposes (Preference, 2018). / siripli'ied software for similar purposes is Policy Analysis
Tool (POLA) (Larsson et al., 201s,, ** nich is used for example by Swedish municipalities for
infrastructure investments. " 1. latter is also free to use with the same restrictions applying
(POLA, 2018).

6. Comparison

The proposed meth’.d cin ke compared and validated in two steps. In the first step, the
proposed P-SWING mic*he s is compared to the same decision analytical method without P-
SWING, and in t* 1e secnd step, the latter is compared with other well-known methods such
as SMART and AHP. rhe P-SWING method was conceptually validated in focus group
discussions, V...ere uie inadequacy of standard SWING and non-SWING methods were
discussed. Bth the conceptual functionality and the actual process implied by the method
were endorseu "V “.1e vast majority of focus group participants and favoured over both the
SWING «w . 2~ SWING methods of eliciting and validating criteria weights. This ensured
that the meu »d was implemented in software and run on a number of test cases, one being the
example highi.ghted in the previous section. The example in section 5 is built on a real-life

13 Confidence here is based on the concept of support level, stating the amount of values where one alternative is
better than another. For example, if alternative P is better than Q for 22 % of the assigned values and Q is better
than P for 78 % of the values, then we should choose Q over P. Simply stated, it is much more likely that
alternative Q is best if we do not have more information than already provided.
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case where a 120 MEUR building was to be acquired in a real-estate procurement process
with options for acquiring existing buildings as well as constructing from scratch.

The most important difference is the quality assurance enabled by P-SWING. The input
rankings of the criteria are much more reliably validated through tk. cross-validation
performed by the partial swinging. The decision maker is given the opportunity « perform an
extra quality assurance and enhancement step. As a result, the decisic.1 p ocess outcome is
further verified. In the example (see Figure 8), it can be seen that ti.. *.vo highest ranked
alternatives, A and B, move closer together as a result of improved inpu* auai.ty.

0,726
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Figure 8. Stan .ard S\ 'ING (left) and P-SWING (right).

Having established P-SWING 75 ar additional quality measure for ranking MCDM methods
such as CAR, the next step i- tu Mlar: it among other types of methods. In Danielson and
Ekenberg (2016) is presente’. a thorough investigation of three dominating classes of MCDN
methods: scoring methods, ranki. ? methods and pairwise comparative methods. The paper
establishes ranking meth Jds as one of the major classes of methods, being preferable in a
large real-life investigat.>n .0 the other two classes both on the grounds of performance and
user experiences and < atisfac..on. The addition of a quality assurance step in ranking methods
could serve as a que’«ty .nhe.cer, as proposed in the focus groups that led to the design of P-
SWING.

7. Conclus.ons

The elicitatiyn methods that are today available in MCDM are often too cognitively
demanding t.* nor'aal real-life decision makers, and there is a clear need for weighting
methods *~~t do not require formal decision analysis knowledge. The SMART method and
SWING wei0'iting (in their varieties) are highly beneficial for actual decision-making, in spite
of the fact th.* they are occasionally difficult to understand. Following experiments with 139
participants, we advise against the use of pure swing-style elicitation techniques on the
grounds of misunderstanding and misinterpreting the relative nature of swing weights, unless
they are amended with additional procedural components to aid understanding. The main
contribution of this article is the modification of the SWING family of elicitation techniques
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and the suggestion of a refined method — the P-SWING method — that allows for intermediate
comparisons as well as avoiding synthetic constructs in order to facilitate understanding. In
this way, the quality of the weight elicitation can be improved, i.e. it is first and foremost a
quality assurance method, an issue of considerable importance according tc the focus group
discussions. We have also demonstrated how this can be combined with -, extension of an
existing method and the enhanced DecidelT tool as part of an integrated decision . rocess.
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