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Abstract There is often a need to allow for imprecise statements in real-world
decision analysis. Joint modeling of intervals and qualitative statements as con-
straint sets is one important approach to solving this problem, with the advantage
that both probabilities and utilities can be handled. However, a major limitation
with interval-based approaches is that aggregated quantities such as expected
utilities also become intervals, which often hinders efficient discrimination. The
discriminative power can be increased by utilizing second-order information in the
form of belief distributions, and this paper demonstrates how qualitative relations
between variables can be incorporated into such a framework. The general case
with arbitrary distributions is described first, and then a computationally efficient
simulation algorithm is presented for a relevant sub-class of analyses. By allowing
qualitative relations, our approach preserves the ability of interval-based methods
to be deliberately imprecise. At the same time, the use of belief distributions allows
more efficient discrimination, and it provides a semantically clear interpretation of
the resulting beliefs within a probabilistic framework.

1 Introduction

It is questionable whether people are capable of providing the inputs that utility the-
ory requires, when most people cannot clearly distinguish between widely separated
probabilities Shapira (1995). This indicates that precise numerical information does
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not make much sense in real-life decision making. Furthermore, even if a decision
maker is able to discriminate between different probabilities, very often complete,
adequate, and precise information is missing. Hence, decision problems frequently
contain far less information than classical utility theory requires. In particular, quite
often we might, at best, have access to some vague probability beliefs and qualitative
preferences among the consequences, and very little more than that. This is the class
of decision problems we aim at in this article.

It has since long been recognized that decision theory needs to accommodate
imprecise probabilities (and utilities) and a vast amount of models with
representations allowing imprecise probability statements have been suggested,
including possibility theory, capacity theory, evidence theory and belief functions
in the Dempster-Shafer sense, various kinds of logic, upper and lower probabilities,
hierarchical models and sets of probability measures. A multitude of articles have
been presented on various methods. For some early examples of these, see e.g.
(Choquet 1954; Dempster 1967; Dubois and Prade 1988; Ellsberg 1961; Good
1962; Shafer 1976; Smith 1961). It is interesting to note that, during recent years, the
activities within the area of imprecise probabilities have increased substantially and
special conferences are now dedicated to contributions on this theme. An example
of this is Jaffray (1999) from the first International Symposium on Imprecise
Probabilities and Their Applications (ISIPTA).

Some general approaches to evaluating imprecise decision situations include
both imprecise probabilities and utilities. We have earlier discussed various aspects
on these issues in a sequence of articles and argued that there are strong arguments
for modeling quantitative impreciseness as intervals (and similar constraints),
enabling representation and modeling of qualitative information as constraint sets
of relations. Cf. Danielson and Ekenberg (1998); Danielson et al. (2009); Ding et al.
(2010); Ekenberg and Thorbiörnson (2001).

An obvious advantage of approaches using upper and lower probabilities is that
they do not require taking particular probability distributions into consideration.
On the other hand, the expected utility range resulting from an evaluation is then
also an interval. To our experience, in real-life decision situations, it is hard to
discriminate between the alternatives in a pure interval approach, even if various
relations are added. In effect, an interval-based decision procedure preserves all
alternatives with overlapping expected utility intervals, even if the overlap is quite
small. Consequently, there is a need to extend the representation of the decision
situation using more information, but keeping the requirement that the decision
maker does not have to be more precise than what is possible. In pursuit of
more discriminative power, we have also developed methods for handling belief
distributions over sub-parts of the probabilities as well as the utilities involved, see
e.g. Danielson et al. (2007); Ekenberg (2000). Furthermore, we have developed a
calculus for aggregating these in various ways, predominantly using a generalization
of the expected utility function Ekenberg et al. (2005).

Thus, we have developed computationally meaningful methods – that have also
been implemented as software – for solving multi-linear expressions with respect to
constraints sets. We have also developed – and implemented – methods for handling
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distributions over independent variables. Various aspects of these latter methods
are provided in Ekenberg et al. (2007, 2006); Sundgren et al. (2009). However,
a great and embarrassing dilemma has been to find the combination of these two
approaches, i.e. to use qualitative statements and distributions at the same time.
Dependencies of the kind that qualitative statements give rise to are not particularly
straightforward to handle in the context of belief distributions. Nevertheless, such
statements arise naturally in many decision situations. For instance, usually a
decision maker has access only to local information and qualitative statements of
relations between different parameters, in terms of constraints, and, consequently,
has no explicit idea about the overall distribution.

This article presents a computationally meaningful method for solving this
dilemma. We present how to solve expected utilities of quite complex structure,
considering general decision trees and belief distributions over all the probabilities
and utilities involved. Furthermore, and most importantly herein, we demonstrate a
method for including qualitative statements, while still preserving the possibility
to use these distributions efficiently. Starting from decision trees, we first solve
the general case, followed by a computationally feasible method for handling this
practically in a relevant sub-class of analyses. Compared to other approaches,
this merging of second-order belief distributions and qualitative statements not
only improves discrimination but also provides an easier interpretation within a
probabilistic framework.

2 Decision Trees

A decision tree represents a decision problem, collecting all information necessary
for the model into one structure.

Definition 1. A graph is a structure hV;Ei where V is a set of nodes and E is a set
of node pairs (edges).

Definition 2. A tree is a connected graph without cycles. A rooted tree is a tree
containing a finite set of nodes and that has a dedicated node at level 0. The adjacent
nodes to a node at level i , except the nodes at level i � 1, are at level i C 1.
A node at level i C 1 that is adjacent to a node at level i is a child of the latter.
A node at level 1 is an alternative. A node at level i is a leaf or consequence
if it has no adjacent nodes at level i C 1. A node that is at level 2 or more and
has children is an event (an intermediary node). The depth of a rooted tree is
max.njthere exists a node at level n/.

For convenience we can, for instance, use the notation that the n children of a
node ci are denoted ci1; ci2; : : : ; cin and the m children of the node cij are denoted
cij1; cij 2; : : : ; cijm, etc.

Definition 3. Given a rooted tree, a decision tree T is formed by assigning a
p symbol to each edge not starting in the root node, and a u symbol to each
consequence node.
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Generally, the p and u symbols can be given any meaning, but here they will
represent probabilities and utilities, respectively. As such they are all constrained to
Œ0; 1�, and further the probabilities on edges from a common parent node (not
the root) must sum to 1. Such a set of probabilities will henceforth be called a
probability group.

Primary evaluation rules of a decision tree model are based on the expected
utility.

Definition 4. Given a decision tree T and an alternative Ai , the expression

E.Ai/ D
ni0X

i1D1
pi i1

ni1X

i2D1
pi i1i2 � � �

nim�2X

im�1D1
pi i1i2:::im�2im�1

�
nim�1X

imD1
pi i1i2:::im�2im�1imui i1i2:::im�2im�1im

where m is the depth of the tree corresponding to Ai , nik is the number of possible
outcomes following the event with probability pik , p:::ij :::, j 2 Œ1; : : : ; m�, denote
probability variables and u:::ij ::: denote utility variables as above, is the expected
utility of alternative Ai in T .

This is a general representation and one option is thus to define probability
distributions and utility functions in the classical way. Another option that also
covers impreciseness is to define sets of possible probability distributions and utility
functions. The possible functions are then conveniently expressed as vectors in
polytopes that are solution sets to the constraints involved.

A number of evaluation procedures, earlier suggested by us, then yield first-
order interval estimates of the evaluations, i.e. upper and lower bounds for the
expected utilities of the alternatives Danielson and Ekenberg (2007). However,
the expected utility range resulting from an evaluation now also becomes an
interval. In real-life decision situations, it is then often hard to discriminate between
the alternatives, i.e. an interval-based decision procedure will not separate out
alternatives with overlapping expected utility intervals, even if the overlap is quite
small. Furthermore, a decision maker does not necessarily believe with equal faith
in all the epistemologically possible probability distributions, represented by a set
of interval statements. Therefore, it is interesting to extend the representation of
the decision situation using more information, such as distributions over classes of
probability and utility measures, in pursuit of more discriminative power.

3 Belief Distributions

The idea is now that distributions can be used for expressing various beliefs over
multi-dimensional spaces where each dimension corresponds to, for instance, pos-
sible probabilities or utilities of consequences. The distributions can consequently
be used to express strengths of beliefs in different vectors in the solution sets.
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Approaches for extending the interval representation using distributions over
classes of probability and value measures in this way have been developed into
various hierarchical models, such as second-order probability theory, cf. Ekenberg
et al. (2006).

In such an approach, it is possible to make use of distributions rather than
intervals for expressing beliefs regarding the probabilities and utilities involved.
However, since general distributions over the entire solution sets are very hard to
imagine, already when handling just a few dimensions, the marginal distributions,
and the relations between these, are of high importance. A more comprehensible
distribution in the latter sense can straightforwardly be defined.

Definition 5. For a utility or probability variable x in a decision tree T , the
continuous random variable QX is the belief distribution over x. QX is defined on
Œa; b� with a; b 2 Œ0; 1� and a < b.

We will frequently use the density function f QX.x/ of QX to represent and visualize
the belief distribution. In some cases we will be interested in the joint density
function for the belief regarding a set of utilities or probabilities. Exemplifying with
the joint belief distribution over the utilities u1; : : : ; un, this density function will be
denoted f QU1;:::; QUn.u1; : : : ; un/, or more compactly as f QU.u/.

1

3.1 Constrained Belief Distributions

Our main objective here is to extend the earlier approach to allow for comparative
constraints. The type of constraints considered are linear relations between two
variables, i.e. of the type ui � uj , which here translate to constraints for the
corresponding belief distributions. These constraints, together with the specified
belief distributions, make up the decision maker’s perception; they are his or her
statements about the decision situation.

We will allow comparative constraints between any two utilities and between any
two probabilities in the same probability group2.

Definition 6. Given a decision tree T , the total set of constraints for QU1; : : : ; QUn
is denoted by AU. Furthermore BU is the corresponding subspace of Œ0; 1�n

implied by AU. Analogously, the total set of constraints for the belief distributions
QPk1; : : : ; QPkl over probabilities from group k is denoted APk , and the corresponding
l-dimensional subspace is denoted BPk .

Note that APk includes the implicit constraint
P

i
QPki D 1.

The constrained belief distributions are obtained by conditioning the original
belief distributions on the total set of constraints:

1Unless explicitly stated otherwise, bold face symbols denote vectors throughout this paper.
2 It is implicit that these constraints are coherent so that, for example, if QU1 < QU2 and QU2 < QU3,
then it cannot hold that QU3 � QU1.
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Definition 7. The constrained belief distributions are given by

.U1; : : : ; Un/
0 D . QU1; : : : ; QUn/0jAU

for the utilities, and by

.Pk1; : : : ; Pkl /
0 D . QPk1; : : : ; QPkl /0jAPk

for probabilities of group k.

Our real interest lies in the constrained variables, since these take into account
both the originally defined belief distributions and the total set of constraints for
those distributions. Because the constraints introduce dependencies, one needs to
operate on the joint belief distributions. If the decision maker has some explicit
beliefs concerning interdependencies, not captured by the constraint sets AU and
APk , joint belief distributions should be specified already from the outset. Otherwise,
which should be the more common scenario, the constraint sets contain all available
information on dependencies, and the marginal unconstrained belief distributions
are independent of each other. This independence then allows for easy calculation
of the required joint density function for the unconstrained belief distributions.
Exemplifying with the utilities, one gets

f QU1;:::; QUn.u1; : : : ; un/ D f QU1.u1/ � � �f QUn.un/ : (1)

The joint density function for the constrained belief distributions is obtained
by reducing the support of the original belief distributions to BU (in the case of
utilities), and scaling up the density function for all points in BU so that the function
integrates to one in its support. This is a multivariate equivalent to truncating a
univariate random variable. The joint density function for U D .U1; : : : ; Un/

0 is
therefore

fU.u/ D f QU.u/
Pr. QU 2 BU/

D f QU.u/R � � � R
BU
f QU.u/ du

for u 2 BU : (2)

The corresponding density for a probability group Pk D .Pk1; : : : ; Pkl /
0 is

fPk.pk/ D f QPk
.pk/

Pr. QPk 2 BPk /
D f QPk

.pk/R � � � R
BPk

f QPk
.pk/ dpk

for pk 2 BPk : (3)

If the original belief distributions were defined in terms of marginal distributions
rather than as a joint one, it is possible to express (2) and (3) even more explicitly.
For the utilities one obtains by combining (1) and (2)

fU.u/ D f QU1.u1/ � � �f QUn.un/R � � � R
BU
f QU1.u1/ � � �f QUn.un/ du

for u 2 BU : (4)
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3.2 Marginal Constrained Belief Distributions

To see how the constraints altered the belief distribution over some variable, for
example the j :th utility, it is necessary to compute the marginal constrained belief
distribution Uj and compare this to the original marginal belief distribution QUj .

Any marginal distribution can be obtained by integrating the joint distribution
over all variables except the one of interest. If u�

j D .u1; : : : ; uj�1; ujC1; : : : ; un/0,
then the marginal distribution of Uj is given by

fUj .uj / D
Z

� � �
“

� � �
Z

B
�j
U

"
f QU.u/R � � � R
BU
f QU.u/ du

#
du�

j for uj 2 Bj
U ; (5)

whereB�j
U is the n�1-dimensional subspace of BU that arises by removing its j :th

dimension.

Example 1. Consider a decision tree where the belief distributions over two utilities
ua and ub are both the standard uniform distribution U.0; 1/:

f QUj .uj / D 1 for 0 � uj � 1 and j 2 fa; bg ;

and where there is only one constraint QUa � QUb. Combining (1) and (5), the
marginal belief distribution over ub under the constraint can be computed:

fUb .ub/ D
Z ub

0

"
1 � 1

R 1
0

R ub
0 1 � 1 duadub

#
dua D

Z ub

0

dua
1=2

D 2ub for ub � ua :

We recognize that Ub � Beta.2; 1/, which is a special case of a more general
result (see Theorem 3). The shift in marginal belief distribution over ub, imposed
by the constraint, is depicted in Fig. 1. This marked alteration of the marginal belief
imposed by the constraint is a demonstration that constraints carry a substantial
amount of information about the decision situation at hand. ut

3.3 Belief Distribution Over Expected Utility

The quantity of main interest here is the expected utility for a given decision
alternative, or the difference in expected utility between two alternatives. Within
our proposed framework, the specified belief distributions over utilities and proba-
bilities, in combination with the sets of comparative constraints, will all affect the
resulting belief distribution over the expected utility.

The resulting distributions tend to become more and more warped around the
mean as the depth and breadth of the tree increases. This phenomenon is due in part
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Fig. 1 Results from Example 1, where the considered decision tree contains two utilities whose
unconstrained belief distributions were both standard uniform. Following the constraint QUa � QUb ,
the resulting (constrained) belief Ub over the second utility is now Beta.2; 1/

to the multiplication of distributions that takes place from root to leaf, and in part to
the effects of convolution of the resulting leaf distributions Sundgren et al. (2009).

In view of Definition 4, if we impose belief distributions over the variables, the
expected utility is really a transformation of random vectors. Therefore, to be able
to analytically derive the resulting belief distribution over the expected utility of a
given alternative, we need the following central result from probability theory:

Theorem 1 (The transformation theorem). Let X D .X1; : : : ; Xn/
0 be a con-

tinuous random vector with density function fX.x/ and domain V � Rn. Let
g D .g1; : : : ; gn/ be a bijection from V to a set W � Rn, and define Y D g.X/.
Assume that g and its inverse h are both continuously differentiable. Then, the
density function of Y is

fY.y/ D fX.h1.y/; : : : ; hn.y// � jdet.J/j for y 2 W ;

where

J D

0
BBBBB@

@x1

@y1
: : :

@x1

@yn
:::
: : :

:::
@xn

@y1
: : :

@xn

@yn

1
CCCCCA

is the Jacobian of the transformation. ut
Theorem 1 can be applied to the expected utility of some alternative Ai :

Theorem 2. Given a decision tree T , for the branch corresponding to Ai , label
the (constrained) belief distributions over all utilities by U D .U1; : : : ; Us/

0, and
label the belief distributions over all probabilities by P D .P1; : : : ; Pr /

0. Further,
let U� D .U1; : : : ; Us�1/0. Finally, denote the index set for probabilities leading up
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to uj by Cj , and let �j D Q
i2Cj Pi

3. Then the belief distribution over E.Ai/ is
given by

fE.Ai /.z/ D
Z

� � �
Z
fP;U

 
p;u�;

z �Ps�1
iD1  iui
 s

!
1

 s
dp du� :

Proof. Let Z D E.Ai / and consider the following transformation:

8
<

:

.Y1; : : : ; Yr/
0 D P

.YrC1; : : : ; YrCs�1/0 D U�

YrCs D Z D �sUs CPs�1
iD1 �iUi

which has the following inverse:

(
P D .Y1; : : : ; Yr /

0

U D
�
YrC1; : : : ; YrCs�1; YrCs�Ps�1

iD1 �i YrCi

�s

�0 :

The Jacobian of this transformation has the following determinant:

det.J/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

@p1

@y1
: : :

@p1

@yrCs
:::
: : :

:::

@pr

@y1
: : :

@pr

@yrCs
@u1
@y1

: : :
@u1
@yrCs

:::
: : :

:::

@us
@y1

: : :
@us
@yrCs

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

e1 e2 : : : 1= s

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1= s

where e1; : : : ; erCs�1 are partial derivatives that do not contribute to the determinant
and therefore do not need to be calculated. According to Theorem 1, the joint density
of Y D .Y1; : : : ; YrCs/0 is

fY.y/ D fP;U

 
p;u�;

z �Ps�1
iD1  iui
 s

!
1

 s

3 That is, �j is the aggregated belief distribution over the probability at the leaf of the j :th utility.
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for some domain W . The marginal belief distribution of E.Ai/ D Z is derived by
integrating out all other variables:

fE.Ai /.z/ D
Z

� � �
Z
fP;U

 
p;u�;

z �Ps�1
iD1  iui
 s

!
1

 s
dp du�

where integration is over some subspace of Œ0; 1�rCs�1 and the domain of fE.Ai / can
be called W 0. ut

A few remarks are called upon. Firstly, E.Ai / could have been expressed in terms
of any Uj , however the choice of Us is notationally convenient. Secondly, it should
be noted that each j is not a constant, but rather a product ofpi s. Finally, since fP;U

is the joint (constrained) density for the beliefs over all utilities and probabilities, it
can be factorized into groups of independent variables. Specifically, all utilities will
be independent of all probabilities, and probabilities from different groups will also
be independent.

The following example shows how the transformation works in practice for an
apparently simple situation.

Example 2. Consider the decision tree for some alternative Ai given in Fig. 2. The
belief distribution over the expected utility is given by

E.Ai/ D P11P111U111 C P11P112U112 C P12U12

D P11P111U111 C P11.1 � P111/U112 C .1 � P11/U12 :

For simplicity, since it reduces the dimensionality of the problem, we assume
that the reformulation of P112 and P12 is coherent with the constraints used. The
transformation becomes

�
.Y1; Y2; Y3; Y4/

0 D .P11; P111; U111; U112/
0

Y5 D P11P111U111 C P11.1 � P111/U112 C .1 � P11/U12

with inverse

8
<

:

.P11; P111; U111; U112/
0 D .Y1; Y2; Y3; Y4/

0

U12 D Y5 � Y1Y2Y3 � Y1.1 � Y2/Y4

1 � Y1
:

Fig. 2 Decision tree
considered in Example 2
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The determinant of the Jacobian is given by

det.J/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

@p11

@y1

@p11

@y2

@p11

@y3

@p11

@y4

@p11

@y5
@p111

@y1

@p111

@y2

@p111

@y3

@p111

@y4

@p111

@y5
@u111
@y1

@u111
@y2

@u111
@y3

@u111
@y4

@u111
@y5

@u112
@y1

@u112
@y2

@u112
@y3

@u112
@y4

@u112
@y5

@u12
@y1

@u12
@y2

@u12
@y3

@u12
@y4

@u12
@y5

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

e1 e2 e3 e4
1

.1 � y1/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

:

This evaluates to 1
1�y1 D 1

1�p11 , which coincides with the general description above,
for  s D p12 D 1 � p11. The joint density of Y is given, for some domainW , by

fY.y/ D fP11;P111;U111;U112;U12

�
p11; p111; u111; u112;

z � v

1 � p11
�

1

1 � p11
;

with v D p11p111u111Cp11.1�p111/u112. This density can be factorized with respect
to independent variables. Assuming that the utilities are not independent under the
given constraints, one obtains

fY.y/ D fP11 .p11/fP111.p111/fU111;U112;U12

�
u111; u112;

z � v

1 � p11
�

1

1 � p11
:

Finally, the resulting belief distribution over E.Ai / can be calculated from

fE.Ai /.z/ D
ZZZZ

fY.y/ dp11 dp111 du111 du112 : ut

However, the complexity of this operation is very high since both the integrand
itself as well as the integration limits might be very difficult to derive. And even if
these steps have been carried out, the sheer dimensionality of the integration might
be prohibitive in practice. So in real cases more efficient methods of calculating
this must be utilized. As we shall see, in certain cases this can be done at relative
computational ease, even for moderately large trees.

4 Simulation from Expected Utilities

As shown in Theorem 2, the resulting distribution over the expected utility of an
alternative can be expressed in terms of a multidimensional integral. However, in
general such integrals should rarely be possible to compute analytically, and so to be
able to benefit from the theoretical results presented thus far, approximate methods
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are called upon. One possibility would be to make use of numerical integration
techniques. We have, however, opted for another solution, namely to use simulation.

To be able to simulate from the resulting belief distributions over the expected
utilities of the alternatives, or from some function thereof, we need to sample
from the respective constrained belief distributions over probabilities and utilities.
Any utility is independent of any probability, and any two probabilities from
separate groups are independent, because of the restricted set of constraints allowed.
Therefore we can sample from the joint belief distribution over the utilities and from
the belief distributions over the various probability groups separately.

The most straightforward approach would be to utilize (2) and (3) through a
simple form of rejection sampling von Neumann (1963). Specifically, exemplifying
with utilities, we could simply apply the following scheme:

Algorithm 1 (Rejection sampling).

Repeat until m samples are retained in total:
Sample Qu D .Qu1; : : : ; Qun/0 from . QU1; : : : ; QUn/0 and retain the sample if Qu 2 BU.

ut

Even if QU1; : : : ; QUn are independent, so that sampling is straightforward, this
approach has one major drawback: As n grows, the probability that a sample is
accepted approaches 0, which in effect means that the real number of samples
m0 required to collect a nominal number of m samples approaches infinity. If the
intended application is not interactive, however, this straightforward simulation
scheme might suffice.

Another generic approach to sampling from a multivariate distribution is to fac-
torize the joint density function into a series of univariate, conditional distributions.
For our joint distribution of beliefs over the utilities this would correspond to the
following:

fU1;:::;Un.u1; : : : ; un/ D fUn.un/fUn�1jUnDun.un�1/ � � �fU1jU2Du2;:::;UnDun.u1/ : (6)

For each of the univariate distributions, sampling can be performed according to the
inverse transformation method Devroye (1986). This method requires draws from
a standard uniform distribution to be inserted into the inverse of the distribution
function. Therefore, in practice, this approach can only be really effective if the dis-
tribution functions that correspond to the density functions in (6) can be analytically
inverted. The complete sampling scheme is summarized in the following:

Algorithm 2 (Multivariate inverse transform sampling).

1. Split up fU1;:::;Un according to (6).
2. Derive the distribution functions FUn ; FUn�1jUnDun ; : : : ; FU1jU2Du2;:::;UnDun .
3. Derive the inverse distribution functions F�1

Un
;F�1
Un�1jUnDun

;: : : ; F�1
U1jU2Du2;:::;UnDun

.

4. Draw n vectors xi D .x1i ; : : : ; x
m
i /

0 of samples from X � U.0; 1/.
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5a. Sample from Un:

.u1n; : : : ; u
m
n /

0 D .F�1
Un
.x1n/; : : : ; F

�1
Un
.xmn //

0

5b. Sample from Un�1:

.u1n�1; : : : ; u
m
n�1/

0 D .F�1
Un�1jUnDu1n

.x1n�1/; : : : ; F
�1
Un�1jUnDumn

.xmn�1//
0

:::

5n. Sample from U1 W

.u11; : : : ; u
m
1 /

0 D .F�1

U1jU2Du12;:::;UnDu1n
.x11/; : : : ; F

�1
U1jU2Dum2 ;:::;UnDumn

.xm1 //
0 ut

The following example is supposed to delineate the fundamental principles of
Algorithm 2:

Example 3. Consider again the situation in Example 1. According to (4), the joint
constrained belief distribution is given by

fUa;Ub .ua; ub/ D f QUa .ua/f QUb .ub/R 1
0

R ub
0
f QUa .ua/f QUb .ub/ duadub

D 1 � 1
R 1
0

R ub
0
1 � 1 duadub

D 1

1=2
D 2

for ub � ua. As will be demonstrated in Sect. 4.1, fUa;Ub can be split up as follows:

fUa;Ub .ua; ub/ D fUb .ub/fUa jUbDub .ua/ D 2ub � .1=ub/ :

The corresponding distribution functions and their inverses are given by

(
FUb .ub/ D u2b for 0 � ub � 1

FUa jUbDub .ua/ D ua
ub

for 0 � ua � ub
and

(
F�1
Ub
.x/ D p

x for 0 � x � 1

F�1
Ua jUbDub

.x/ D xub for 0 � x � 1
:

Assume we want m D 5 draws, and that we sample xb D .0:94; 0:13; 0:83; 0:47;

0:55/0 and xa D .0:18; 0:70; 0:57; 0:17; 0:94/0 from X � U.0; 1/. This then yields

2
66666664

u1b
u2b
u3b
u4b
u5b

3
77777775

D

2
66666664

p
0:94p
0:13p
0:83p
0:47p
0:55

3
77777775

D

2
66666664

0:97

0:36

0:91

0:69

0:74

3
77777775

and

2
66666664

u1a
u2a
u3a
u4a
u5a

3
77777775

D

2
66666664

0:18 � u1b
0:70 � u2b
0:57 � u3b
0:17 � u4b
0:94 � u5b

3
77777775

D

2
66666664

0:17

0:25

0:52

0:12

0:70

3
77777775

:
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Clearly, to obtain samples that accurately represent the .Ua; Ub/0 distribution, one
would need to set m considerably higher than in this illustrative example. ut

An implicit assumption in Algorithm 2 is that each distribution function be
strictly increasing, since otherwise its inverse would not exist. However, this
criterion is fulfilled for the vast majority of distributions and should not present
any issues in practice. There are other complicating matters of greater practical
concern, such that for an arbitrary joint distribution, even step 1 in the scheme
might be difficult to accomplish. Should step 1 be successful, step 3 might still prove
difficult or impossible. Should this be the case, one could use numerical techniques
for inverting the distribution functions, though this would slow down the procedure
quite dramatically. We shall therefore make use of one particular distribution, the
uniform distribution, where it is possible to carry out the complete scheme. The
uniform distribution is appealing since it can be thought of as a direct probabilistic
equivalent to using intervals. In other words, if the decision maker would choose an
interval Œa; b�, a natural choice in the context of the current approach would be the
U.a; b/ distribution.

4.1 Special Case of Uniform Distributions

One important sub-case is when the distributions are uniform. We describe here an
efficient way of sampling from the resulting belief distribution over the expected
utility if one (a) uses arbitrary independent uniform belief distributions over all
utilities; (b) uses an ordering constraint within each of an arbitrary number of
disjoint subsets of the utilities4; and (c) uses no other constraints. Because there
are no relations between utilities from different subsets, independence allows
sampling from each subset separately. We can therefore, without loss of generality,
describe the special case where there is just one subset fu1; : : : ; ung containing all
utilities.

For the probabilities, the implicit sum constraint is a complicating factor. We
will here use the Dirichlet distribution to sample from a probability group, and not
impose any relational constraints. The Dirichlet distribution has been previously
used in this context Ekenberg et al. (2007) and it does relate to the above: If we use
standard uniform distributions over pk1; : : : ; pkl and impose no further constraints
than the implicit sum constraint, then .Pk1; : : : ; Pkl /0 will be distributed according
to the Dirichlet.˛1 D 1; : : : ; ˛l D 1/ distribution. Sampling from a Dirichlet
distribution is straightforward using standard statistical software.

Assume, for brevity, that we have named the utilities after their ordering. Thus,
the constraint under consideration is AU W QU1 � : : : � QUn. The following result,
given with a standard proof, is useful:

4 The union of these subsets need not equate the set of all utilities.
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Theorem 3. Let X1; : : : ; Xn be a sample from a distribution with density function
f and distribution function F . Then the density function for the largest observation
X.n/ is fBeta.n;1/.F .x//f .x/.

Proof. The distribution function for X.n/ is given by

FX.n/.x/ D Pr.X1 � x; : : : ; Xn � x/ D
nY

kD1
Pr.Xk � x/ D .F.x//n :

Differentiation then yields the density function:

fX.n/.x/ D n.F.x//n�1f .x/ D fBeta.n;1/.F .x//f .x/ : ut

If all unconstrained belief distributions QUj are U.a; b/, then the resulting belief
distribution Un is equivalent to X.n/ in Theorem 3. It follows that

fUn.un/ D n
�un � a

b � a
�n�1 1

b � a D n.un � a/n�1

.b � a/n
:

Conditional on Un D un, all remaining belief distributions are U.a; b/ truncated to
the interval Œa; un�, which means that QUj jUn D un � U.a; un/ for j < n. Since
QUn�1 is now the largest of the remaining variables, Theorem 3 gives

fUn�1jUnDun.un�1/ D .n � 1/.un�1 � a/n�2

.un � a/n�1 :

By repeating the same argument for all belief distributions down to QU1, the joint
density for the constrained belief distribution can be factorized, as required:

fU1;:::;Un.u1; : : : ; un/ D nŠ

.b � a/n

D n.un � a/n�1

.b � a/n
.n� 1/.un�1 � a/n�2

.un � a/n�1 � � � 2.u2 � a/

.u3 � a/2
1

u2 � a

D fUn.un/fUn�1jUnDun.un�1/ � � �fU2jU3Du3 .u2/fU1jU2Du2 .u1/ :

All corresponding distribution functions can be derived, and it turns out that they
are all analytically invertible:

(
F�1
Un
.x/ D x1=n.b � a/C a for k D n

F�1
Uk jUkC1DukC1

.x/ D x1=k.ukC1 � a/C a for k D n � 1; n� 2; : : : ; 1
: (7)

Thus, all prerequisites for applying Algorithm 2 are fulfilled.
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It would be a severe limitation to require that QU1; : : : ; QUn follow the same uniform
distribution. We can overcome this by once again making use of the fact that a
truncated uniform variable still is uniform. Let each variable have its own uniform
distribution, QUj � U.aj ; bj /, and consider the following scheme:

Algorithm 3.

1. Order the set f0; a1; : : : ; an; b1; : : : ; bn; 1g, and define all intervals Ij D Œcj ; dj �

from adjacent points in this ordered set. (Note that some points might be
identical, in which case no interval results.) Denote the total number of intervals
by NI .

2. Construct all configurations Ci , i.e. all ways to distribute QU1; : : : ; QUn between
these intervals. Denote by NC the total number of configurations where AU can
hold, and by NU

ij the number of variables QUk in interval Ij under configura-
tion Ci .

3. FOR i D 1 TO i D NC

FOR j D 1 TO j D NI

FOR k D 1 TO k D NU
ij

Calculate Npijk D Pr. QUk 2 Ij / D F QUk .dj /� F QUk .cj /
END FOR

Calculate Npij D Pr. QU1; : : : ; QUNU
ij

2 Ij / D QNU
ij

kD1 Npijk
Calculatebpij D Pr.AU holds in Ij jCi/ D 1=NU

ij Š

END FOR
Calculate Npi D Pr.Ci / D QNI

jD1 Npij
Calculatebpi D Pr.AUjCi/ D QNI

jD1bpij
Calculate pi D bpi Npi

END FOR
Calculate p D PNC

iD1 pi
4. FOR r D 1 TO r D m

Sample xr D .xr1 ; : : : ; x
r
NC /

0 from .X1; : : : ; XNC /0 � Multinom.1I p1=p;
: : : ; pNC =p/

FOR the single i corresponding to xri D 1

FOR j D 1 TO j D NI

Draw a sample of the variables in Ij under configuration Ci , by
setting a D cj and b D dj in (7), and using Algorithm 2

END FOR
END FOR

END FOR ut

In other words, Algorithm 3 simulates from fU.u/ by treating it as a mixture
density over the configurations, with suggested mixture parameters pi=p. The
validity of this approach is asserted by the following theorem:
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Theorem 4. Consider a decision tree T with a set of utility variables whose
corresponding belief distributions QU1; : : : ; QUn are independent and distributed as
QUj � U.aj ; bj /. Under the constraint AU W QU1 � : : : � QUn, Algorithm 3 can be

used to sample from the resulting belief distribution U D .U1; : : : ; Un/
0.

Proof. By the law of total probability and Bayes’ theorem, and following the
notation of Algorithm 3:

fU.u/ D
NCX

iD1

h
f QUjAU;Ci

.u/ � Pr.Ci jAU/
i

D
NCX

iD1

�
f QUjAU ;Ci

.u/ � Pr.AUjCi/Pr.Ci/

Pr.AU/

�

D
NCX

iD1

"
f QUjAU ;Ci

.u/ � Pr.AUjCi/Pr.Ci/
PNC

iD1 Pr.AUjCi/Pr.Ci /

#

D
NCX

iD1

�
f QUjAU ;Ci

.u/ � pi

p

�
;

which shows that pi=p is the correct mixture parameter for configuration Ci .
Finally the claim follows by considering the distributions f QUjAU ;Ci

.u/. Under Ci ,
but not yet considering AU, all variables in Ij are distributed as U.cj ; dj /. Thus,
since they are equidistributed, AU can be introduced through Algorithm 2 and (7).
Further, because the relative order of any two variables from different intervals is
fixed given Ci , they are independent, and the complete distribution .U1; : : : ; Un/0
can be obtained by repeated interval-wise sampling from configurations drawn
according to a Multinom.1I p1=p; : : : ; pNC =p/ distribution. ut

Note that the algorithm only includes configurations where AU can hold. This is
for practical reasons, and the validity follows immediately since Pr.AUjCi/ D 0 for
any configuration not fulfilling this criterion.

If there are n variables and NI resulting intervals, the total number of config-

urations where AU can hold is
	
nCNI�1
NI�1



. Therefore, in practice, Algorithm 3 is

only efficient if NI is kept relatively low, which means that the variables need to
share a few common endpoints. In our experience, it is very feasible to allow a
resolution of 0.2, meaning that endpoints are chosen from f0; 0:2; 0:4; 0:6; 0:8; 1g,
even for n relatively large (about 30). Obviously the computational complexity will
also depend on how many samples that are desired in the simulation. Note that the
tree as a whole can be much larger than n; it is really the size of the largest set of
ordered utility variables that matters.

Example 4. Consider the decision tree with two alternatives given in Fig. 3. Assume
that the decision maker has specified the following:
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Fig. 3 Decision tree
considered in Example 4

8
<

:

u11; u12; u21 2 Œ0; 1� and u22 2 Œ0; 0:5�
p11; p12; p21; p22 2 Œ0; 1�
u11 � u21 and u12 � u22

:

The intuitive interpretation of this situation is that alternative 1 is superior to
alternative 2. However, an interval analysis would yield E.A1/ � E.A2/ 2 Œ�1; 1�,
indicating no discrimination whatsoever.

Now consider the approach described here, and assume that the decision maker
instead specifies

8
<

:

QU11; QU12; QU21 � U.0; 1/ and QU22 � U.0; 0:5/
. QP11; QP12/0 � Dirichlet.1; 1/ and . QP21; QP22/0 � Dirichlet.1; 1/
QU11 � QU21 and QU12 � QU22

:

The resulting belief distribution over .E.A1/;E.A2//0 was simulated using Algo-
rithm 3 separately for . QU11; QU21/0 and . QU12; QU22/05. . QP11; QP12/0 and . QP21; QP22/0
were also simulated separately. 1 million samples were drawn, and the results are
displayed in Fig. 4. It is apparent from these figures that the belief in alternative
1 exceeds that of alternative 2 quite clearly, even though there is some overlap.
Further, the simulation provides us with a straightforward quantification of the
degree of discrimination. For example, we can extract a 90% probability interval for
E.A1/ � E.A2/ from the 5:th and 95:th percentiles of the simulated values, which
happens to be Œ0:03; 0:71�. The interpretation of this interval is direct: Under the
beliefs and constraints specified by the decision maker, there is a 90% probability
that the difference in expected utility between alternatives 1 and 2 lies between
0.03 and 0.71. Based on this analysis we can confidently discriminate between the
alternatives, and the result is coherent with intuition. ut

A desirable extension of the proposed method would be to allow for other classes
of distributions than the uniform. There are two inherent obstacles in the framework
that precludes this. First, as can be realized from Theorem 3, the class of density
functions for the distribution in question must obey rather strict form conventions, in

5 For . QU11; QU21/0, there is only one interval to consider, and so it really suffices with Algorithm 2.
Note that QU11 and QU21 are precisely QUb and QUa, respectively, from Examples 1 and 3.
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Fig. 4 Results from the simulation of Example 4. (a) Histogram over the simulated belief for the
difference E.A1/ � E.A2/. (b) Two-dimensional histogram over the simulated beliefs for E.A1/
and E.A2/. Darker color indicates a higher density of points

order to yield analytically invertible distribution functions for the ordered variables.
Second, (7), as well as the fundamental idea behind Algorithm 3, rest on a subtle,
yet very powerful property of the uniform distribution: A truncated uniform variable
is still uniform, with parameters equal to the endpoints of the truncated interval. As
far as we are aware, no other continuous distribution shares this property. Therefore,
to be able to derive similar methods for other classes of distributions, fundamentally
different approaches would be needed.

5 Summary and Conclusions

There is often a need in real-life decision analyses to allow for imprecise statements
regarding probabilities and utilities. Various interval-based approaches have been
suggested, but the resulting aggregations range within intervals as well, causing an,
often unnecessary, information loss. There is therefore a need to extend the
representation of the decision situation using more information, but keeping the
requirement that the decision maker does not have to be more precise than what is
possible.

To this end, we have proposed a solution where qualitative statements, i.e. rela-
tions between variables, are combined with second-order information in the form
of belief distributions over probability and utility variables. Within the framework
of belief distributions, we have demonstrated how qualitative statements translate
to constraints, and how these constraints affect both marginal belief distributions as
well as the resulting belief distributions over the expected utilities of the alternatives.
Further, and of clear practical benefit, we have presented a computationally
meaningful method where arbitrary uniform distributions can be used for the
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utility variables, in combination with ordering relations among these variables. This
method rests on a series of fairly subtle, yet fundamental, theoretical arguments.

The results presented here have two distinct advantages. First, while preserving
the ability to be deliberately imprecise and including qualitative relations, our
approach allows a high degree of discrimination between alternatives compared to
what interval-based approaches can accomplish. At the same time, we can make
a semantically clear interpretation of the resulting beliefs within a probabilistic
framework.

Acknowledgements The authors wish to thank Alina Kuznetsova for valuable suggestions that
helped improve the contents of this paper.
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